Aktuelle Themen und grundlegende Fragen rund um die E-Gitarre werden von GITEC auch in diesem Jahr in Online-Vorträgen präsentiert werden. Im Anschluss an die Vorträge ist dann noch Zeit für Fragen, Diskussion und Fachsimpeln. Die erste Veranstaltung mit dem Titel „Wie klingt der Tone-Cap“ ist schon erfolgreich über die virtuelle Bühne gegangen. Es soll nun am Ende jeden Monats ein weiterer Vortrag folgen. Diese Online-Vorträge sind für alle GITEC-Mitglieder kostenlos zugänglich. Näheres dazu im Mitgliederbereich und in den Newslettern.
Außerordentliche GITEC Mitgliederversammlung am 10.01.2021
Liebe Mitglieder der GITEC,
am 20.01.2021 um 20 Uhr findet die Außerordentliche Mitgliederversammlung zur GITEC-Mitgliederversammlung 2020 statt.
Näheres dazu findet Ihr auf der Mitglieder-Info Seite.
Der GITEC-Vorstand
Gemeinsames on-line Musizieren mit Jamulus
Da zur Zeit gemeinsames Musizieren mehrerer Musiker im selben Raum vermieden werden sollte, bieten sich Online-Lösungen an. Im heutigen Online-GITEC-Treffen wurde dazu die Software Jamulus vorgestellt, die ein Zusammenspiel mehrerer Musiker über das Internet ermöglicht.
Hier zur Information die interessanten Links:
Jamulus - Internet Jam Session Software
- Webseite: https://jamulus.io/
- Wiki mit der Dokumentation und Installationsanleitungen: https://jamulus.io/de/wiki/
- Diskussions- und Hilfe-Foren: https://sourceforge.net/p/llcon/discussion/
- Software Download: https://sourceforge.net/projects/llcon/
- Entwicklerseite: https://github.com/corrados/jamulus
- Artikel über Jamulus von der Audio Engineering Society Melbourne: http://www.aesmelbourne.org.au/meeting-report-nov-2020/
Viele Beispiele und Anleitungen zu Jamulus finden sich auch auf YouTube.
JamBox
JamBox ist Jamulus als eigenständiges Gerät. Dazu wird ein kleiner Raspberry Pi 4 Computer mit der JamBox Software bestückt. Zusätzlich benötigt man dann noch ein USB-Audio-Interface und es kann los gehen.
https://github.com/kdoren/jambox-pi-gen
Jambox: a Raspberry PI 4 - pre-built image runs Jamulus with web browser UI
https://sourceforge.net/p/llcon/discussion/hardware/thread/91475bcb82/
Einladung zur Mitgliederversammlung 2020 von GITEC e.V.
Liebe Mitglieder der GITEC,
am 30.12.2020 um 20 Uhr findet die Online-Version der GITEC-Mitgliederversammlung 2020 statt.
Näheres dazu findet Ihr auf der Mitglieder-Info Seite.
Der GITEC-Vorstand
GITEC Online-Meeting 2020
Aufgrund der Pandemie-Entwicklung mussten wir schweren Herzens das GITEC-Meeting 2020 am 17. und 18. Oktober in der Music Academy in Regensburg absagen. Stattdessen gibt es nun das erste GITEC Online-Meeting!
Beginn ist am ursprüngliche Termin 17. und 18. Oktober.
GITEC-Mitglieder bekommen kostenlosen Zugang.
Näheres hier: GITEC Meeting 2020
GITEC-Meeting 2020: Der Kemper Profiling Amp im experimentellen Vergleich zu Hardware-Verstärkern
Ein weiterer Höhepunkt des GITEC-Meetings 2020 wird dieser Vortrag von Prof. Dr. Reinhard Kopiez:
Zum Verwechseln ähnlich (?) – Der Kemper Profiling Amp im experimentellen Vergleich zu Hardware-Verstärkern
Die digitale Simulation von Instrumentenklängen ist während der letzten Jahrzehnte zu einem wichtigen Bestandteil von Musikproduktion und Live-Performance geworden. Auch die charakteristischen Klänge empfindlicher Gitarrenverstärker werden immer häufiger digital nachgebildet. In Modeling-Amps (Abk. für „Amplifier“, dt. „Verstärker“) wird der Klang der Hardware nachgebildet und auf Knopfdruck abrufbar gemacht. Noch weiter geht die „Profiling“-Technologie: Damit müssen Gitarristen oder Bassisten nicht länger auf die vorgefertigten Sounds der verschiedenen Hersteller zurückgreifen, sondern bilden stattdessen ihren individuellen Sound nach. Wissenschaftlich ungeprüft blieb bislang jedoch das Qualitätsversprechen eines prominenten Herstellers von Simulations-Verstärkern, die Simulation sei vom Originalklang nicht zu unterscheiden. Dies war die Zielsetzung dieser Studie. In einer Online-Studie beurteilten 177 Testpersonen zwölf Hörbeispiele dahingehend, ob die kurzen Phrasen mit der Original-Hardware aufgenommen wurden oder mit einer Simulation der Hardware mittels des Kemper Profiling Amps.
Das Erkennen eines mit dem Simulations-Verstärker erstellten Hörbeispiels stellte sich dabei als etwas leichter heraus (60 Prozent korrekt) als das richtige Zuordnen eines mit der Original-Hardware erstellten Hörbeispiels (53 Prozent korrekt). Insgesamt liegen die Urteiler damit nur knapp über Rateniveau.
Insgesamt zeigt die Studie, dass Skepsis gegenüber digitalen Simulationen nicht unbedingt gerechtfertigt ist. Der KPA Simulations-Verstärker ist durchaus in der Lage, einen qualitativ hochwertigen Sound zu produzieren, der sich für die Meisten kaum noch vom Original unterscheiden lässt. Besonders in Live-Situationen scheint er ein verlässliches und sehr komfortables Mittel zu sein, den Sound aus dem Studio auf die Bühne mitzunehmen. Ein Defizit bleibt jedoch bei der Klangsimulation: Bilder von beeindruckenden Verstärker- und Lautsprechertürme gibt es bei diesem Ansatz nicht zu sehen.
Die zugehörige Publikation:
Düvel, N., Kopiez, R., Wolf, A., & Weihe, P. (2020). Confusingly Similar: Discerning between Hardware Guitar Amplifier Sounds and Simulations with the Kemper Profiling Amp
GITEC-Meeting 2020: Physik des Magnettonabnehmers
Sucht man im WWW nach technischen Informationen über Gitarrentonabnehmer, wird man schnell fündig: Frequenzgänge, Impedanzen, Induktivitäten, Magnetflüsse. Die Crux: die meisten dieser Infos sind falsch, weil von technischen Laien erstellt. Noch relativ simpel ist es, den DC-Widerstand eines Tonabnehmers zu messen – doch weil dieser nicht bei DC arbeitet, ist der DC-Wert so gut wie völlig irrelevant. Eine Induktivität zu bestimmen (und dreistellig zu publizieren :-)) ist da schon anspruchsvoller, scheint jedoch mit einem Multimeter machbar. Das Problem hierbei: Die induktive Komponente der Tonabnehmer-Impedanz ist keine Konstante! Je nach Bauart kann L im relevanten Frequenzbereich um bis zu 70% abnehmen (Abb. 1). Und ob ein Pickup 2.8H oder 0.84H hat … das müsste eigentlich schon als wesentlich erachtet werden.

Um etwas Licht in das Dunkel der WWW-Märchen zu bringen, veranstaltet GITEC seit nunmehr 6 Jahren Tagungen zur Gitarrentechnik – in diesem Jahr mit Fokus auf die Gitarrentonabnehmer. Die Tagung beginnt mit einem Vortrag von Prof. Zollner zum Thema: Physik des Magnettonabnehmers. Man könnte meinen, seit der „Physik der Elektrogitarre“ sei doch schon alles gesagt, doch behandelt dieses 1260-seitige Werk ein Thema ziemlich kurz: die Tonabnehmer-Magnetik. Dieses Defizit wird nun behoben, Zollner wird erstmalig ausführlich über seine FEM-Analysen berichten. FEM, das sind numerische Berechnungen nach der „Finite-Elemente-Methode“. Ein Untersuchungsobjekt (z.B. das Magnetfeld eines Pickups) wird hierzu in winzige Pyramiden aufgeteilt, an deren Endpunkten der PC die Feldgleichungen lösen muss. Abb. 2 zeigt als Beispiel einen Tele-Pickup. Im Bild ist nur die angeschnittene Blechkappe mit Spule und Magneten dargestellt, tatsächlich muss auch noch der Luftraum diskretisiert werden. So erreicht man schnell Abermillionen winziger Tetraeder, zu deren Berechnung auch ein schneller PC einige Stunden benötigt.

Das Ergebnis ermöglicht dann aber Erkenntnisse, die eine analytische Berechnung nie offenbaren könnte. So sieht man z.B. genau, wo und warum ungeeignete Bleche die Höhen fressen, und warum die Billig-Tele so gar nicht nach Tele klingen will (Abb. 3).

Es sind vor allem zwei Themenbereiche, die in pseudowissenschaftlichen Magnetfeld-Texten falsch dargestellt werden: Die Permeabilität und die Magnetfeldform. Oft sieht das Magnetfeld aus wie in Abb. 4. Das ist nun nicht komplett falsch … aber eben nur der unwichtige Teil der Wahrheit. Der Fehler liegt nicht so sehr in der approximierten Form der Feldlinien (darüber könnte man hinwegsehen), der Fehler ist, dass nicht zwischen statischem und dynamischem Feld unterschieden wird.

Das statische Feld erstreckt sich in weiten Bögen vom Nord- zum Südpol, da taugt Abb. 4 als grobe Näherung. Das von der schwingenden Saite erzeugte dynamische Feld hat demgegenüber eine ganz andere Form: es ist viel mehr auf den Bereich zwischen saitennaher Polplatte und Saite konzentriert. Es dringt in relevanter Stärke aber nur wenige Millimeter in die Tonabnehmerspule ein, und hier kommen wir zum zweiten Problemkind der WWW-Mythen: der Permeabilität. Wenn man nicht zu unterscheiden weiß zwischen differentieller und reversibler Permeabilität, wenn man als Magnet-Kriterium einzig allein die Remanenz-Flussdichte betrachtet, zieht man falsche Schlüsse. Die Stärke des Magnetfeldes ist ein wichtiger Parameter für die „Lautstärke“ (Empfindlichkeit) des Tonabnehmers. Ein starkes Wechselfeld hilft aber rein gar nichts, wenn es nicht in die Spule eindringt. Hierfür wird die Permeabilität gebraucht. Die reversible – mit der differentiellen wird’s grottenfalsch. Je höher die reversible Permeabilität, desto weiter dringt das Wechselfeld in die Spule ein, und desto mehr Spannung wird erzeugt (induziert). Dummerweise gibt’s da keine Proportionalität, die stärksten Magnete sind nicht die mit der höchsten reversiblen Permeabilität. Verwirrend? Vielleicht – aber dafür gibt’s ja den Zollner-Vortrag auf der GITEC-2020, da werden die Zusammenhänge ausführlich erklärt.
Noch ein paar Bilder als Vorgeschmack: Abb. 5 zeigt die Axial-Magnetisierungen von Saite und Zylindermagnet; einmal für das statische DC-Feld, daneben für das dynamische AC-Feld. Klar erkennbar: Die unterschiedliche Feldverteilung im Magneten. Die mit den FEM-Berechnungen erzielten Ergebnisse passen gut zu Messungen an realen Systemen, und liefern eine erstaunliche Antwort auf die Frage, ob denn nun Alnico-2, -3, -4, -5, -6 oder -8 die für Gitarren-Tonabnehmer bestgeeignete Magnetlegierung ist. Das Ergebnis dürfte auch Experten überraschen, mehr darüber im Vortrag.
Abb. 5: Axialflussdichten für Saite und Magnet. Links DC, rechts AC, unterschiedliche Skalierungen.
Mit Abb. 6 wird ein weiteres Geheimnis gelüftet: Wie wichtig ist das Material der magnetfeldführenden Ferromagnetika? Wie man sieht (und eigentlich erwarten muss), ist die Flussdichte in den Schraubenschäften hoch, der Sättigungsbereich ist schon in Reichweite. Noch wichtiger: Bereits bei mittleren Frequenzen verdrängen Wirbelströme den Magnetfluss in die Randzonen, d.h. in die Gewindegänge! Und wie E-Technikstudierende im ersten Semester lernen: Ströme in Metallen produzieren Wirkleistung, und die – so lehrt der Energiesatz – kann nur von der schwingenden Saite kommen. Je mehr Wirkleistung in den Schrauben erzeugt wird, desto weniger Spannung steht an der Buchse zur Verfügung. Für die verwendeten Schrauben und sonstigen Ferromagnetika gilt: Die spezifische Leitfähigkeit sollte möglichst klein sein, die reversible Permeabilität relativ groß. Die zweite Forderung zu erfüllen ist leicht, die erste relativ schwer.
Abb. 6: Flussdichte in den P90-Schrauben bei verschiedenen Frequenzen.
Bei den Humbuckern (Abb. 7) gibt es nicht nur Schrauben, sondern auch Slugs. Deren Magnetflussdichte ist deutlich geringer, was nicht erstaunt: die Querschnittsfläche ist ja auch deutlich größer. Das Wirbelstromverhalten von Schrauben und Slugs ist wegen dieser Geometrieunterschiede unterschiedlich, mit verschiedenartigen Materialien lassen sich deshalb Frequenzgang und/oder Brummunterdrückung optimieren.
Abb. 7: Magnetflussdichten im Humbucker.
Damit das Thema Magnettonabnehmer nicht zu theoretisch wird, gibt es auf der GITEC-2020 natürlich auch noch die Praxis: Wir haben zwei Gitarren so modifiziert, dass sich für Hörversuche Tonabnehmer und Magnete in Sekundenschnelle tauschen lassen (Abb. 8). Derartige Versuche erleichtern die Entscheidung, ob man bei seiner Gitarre die Pickups tauscht. Oder die Magnete. Oder nichts.
Abb. 8: Testgitarren für Hörversuche [Fotos: W. Hönlein, M. Zollner]
Interesse geweckt? Infos und Teilnahme-Details unter Meetings. GITEC-Mitglieder nehmen kostenlos teil (39 €/Jahr), Nichtmitglieder zahlen 50€/Tag.
Zurzeit gehen wir davon aus, dass die Tagung als Präsenzveranstaltung stattfinden kann, dass sich also alle gesetzlichen Auflagen erfüllen lassen. Sollte das nicht möglich sein, ist eine Online-Veranstaltung in Planung. Ausfallen lassen wollen wir’s nicht, denn die Veröffentlichung wissenschaftlicher Erkenntnisse ist unsere satzungsmäßige Pflicht. Da unterscheiden wir uns vom selbsternannten Gitarren-Guru: dessen Exzerpte sind, wie die Wissenschaft sagen würde, Ignis flatus, äh... fatuus.
Neuer Artikel: Röhren-Verzerrer
Schon 1977 hatte Ampeg in einigen Röhren-Gitarren-Amps einen Röhren-Verzerrer eingebaut. In diesem Artikel analysiert Bernd Meiser diese Verzerrerschaltung und prüft, ob sie auch heutzutage noch brauchbar erscheint.
Röhren-Verzerrer
Neuer Artikel: Die Elektrik der Fender Stratocaster, Teil 3
Neuer Artikel: Die Elektrik der Fender Stratocaster, Teil 2
Der zweite Teil dieser Serie über die Elektrik der Fender Stratocaster E-Gitarre behandelt die eher unbekannte magnetische Seite des Strat Pickups, denn auch hier wird bestimmt, wie höhenreich das von den Saiten angebotene Frequenzspektrum in elektrische Signale gewandelt wird.